12.1.4 The Yoneda Embedding

    The Yoneda embedding of $\mathcal{C}$1 is the functor2

    \[ {\text{よ}}_{\mathcal{C}}\colon \mathcal{C}\hookrightarrow \mathsf{PSh}(\mathcal{C}) \]

    where

    • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, we have

      \[ {\text{よ}}_{\mathcal{C}}(A) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h_{A}. \]
    • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the action on morphisms

      \[ {\text{よ}}_{\mathcal{C}|A,B}\colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)\to \operatorname {\mathrm{Nat}}(h_{A},h_{B}) \]

      of ${\text{よ}}_{\mathcal{C}}$ at $(A,B)$ is given by

      \[ {\text{よ}}_{\mathcal{C}|A,B}(f)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h_{f} \]

      for each $f\in \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)$, where $h_{f}$ is the representable natural transformation associated to $f$ of Definition 12.1.3.1.1.


    1. 1Further Terminology: Also called the covariant Yoneda embedding to distinguish it from the contravariant Yoneda embedding of Theorem 12.2.5.1.1.
    2. 2Further Notation: Also written $h_{(-)}$, or simply ${\text{よ}}$.

    Let $\mathcal{C}$ be a category.

    1. 1.

      Fully Faithfulness. The Yoneda embedding

      \[ {\text{よ}}_{\mathcal{C}}\colon \mathcal{C}\hookrightarrow \mathsf{PSh}(\mathcal{C}) \]

      is fully faithful.

    2. 2.

      Preservation and Reflection of Isomorphisms. The Yoneda embedding

      \[ {\text{よ}}_{\mathcal{C}}\colon \mathcal{C}\hookrightarrow \mathsf{PSh}(\mathcal{C}) \]

      preserves and reflects isomorphisms, i.e. given $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the following conditions are equivalent:

      1. (a)

        We have $A\cong B$.

      2. (b)

        We have $h_{A}\cong h_{B}$.

  • 3.

    Density. The Yoneda embedding

    \[ {\text{よ}}_{\mathcal{C}}\colon \mathcal{C}\hookrightarrow \mathsf{PSh}(\mathcal{C}) \]

    is dense.

  • 4.

    Interaction With Density Comonads. We have

  • 5.

    Interaction With Codensity Monads. We have

    \[ \operatorname {\mathrm{Ran}}_{{\text{よ}}}({\text{よ}})\cong \mathsf{Spec}\circ \mathsf{O}, \]

    where $\mathsf{Spec}$ and $\mathsf{O}$ are the functors of Unresolved reference.

  • Item 1: Fully Faithfulness
    Let $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$. Applying the Yoneda lemma (Theorem 12.1.5.1.1) to the functor $h_{B}$ (i.e. in the case $\mathcal{F}=h_{B}$), we have

    \[ \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)\cong \operatorname {\mathrm{Nat}}(h_{A},h_{B}), \]

    and the natural isomorphism

    \[ \xi _{A,B}\colon \mathcal{h}_{B}(A)\Rightarrow \operatorname {\mathrm{Nat}}(h_{A},h_{B}) \]

    witnessing this bijection is given by

    \begin{align*} \xi _{A,B}(g)_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h^{X}_{g}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g_{*} \end{align*}

    for each $X\in \operatorname {\mathrm{Obj}}(\mathcal{C})$ and each $g\in h^{X}_{B}$, i.e. we have $\xi _{A,B}={\text{よ}}_{\mathcal{C}|A,B}$. Thus ${\text{よ}}_{\mathcal{C}}$ is fully faithful.

    Item 2: Preservation and Reflection of Isomorphisms
    This follows from Chapter 11: Categories, Item 1 of Proposition 11.5.1.1.6 and Item 3 of Proposition 11.6.3.1.2.

    Item 3: Density
    Omitted.

    Item 4: Interaction With Density Comonads
    Omitted.

    Item 5: Interaction With Codensity Monads
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: