Let $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$.
Let $\mathcal{C}$ be a category.
Let $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$.
The corepresentable copresheaf associated to $A$ is the copresheaf
where
Action on Objects. For each $X\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, we have
Action on Morphisms. For each $X,Y\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the action on morphisms
of $h^{A}$ at $(X,Y)$ is given by sending a morphism
of $\mathcal{C}$ to the map of sets
defined by
where $f_{*}$ is the postcomposition by $f$ morphism of Chapter 11: Categories, Item 2 of Definition 11.1.4.1.1.
A corepresenting object for a copresheaf $F\colon \mathcal{C}\to \mathsf{Sets}$ on $\mathcal{C}$ is an object $A$ of $\mathcal{C}$ such that we have $F\cong h^{A}$.
A copresheaf $F\colon \mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}$ on $\mathcal{C}$ is corepresentable if $F$ admits a corepresenting object.
The corepresentable copresheaf on the delooping $\mathsf{B}{A}$ of a monoid $A$ associated to the unique object $\bullet $ of $\mathsf{B}{A}$ is the right regular representation of $A$ of ,
.
Let $F\colon \mathcal{C}\to \mathsf{Sets}$ be a copresheaf. If there exist $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$ such that we have natural isomorphisms
then $A\cong B$.
By composing the isomorphisms $h^{A}\cong F\cong h^{B}$, we get a natural isomorphism $h^{A}\cong h^{B}$. By Item 2 of Proposition 12.2.4.1.2, we have $A\cong B$.