12.2.4 The Contravariant Yoneda Embedding

    The contravariant Yoneda embedding of $\mathcal{C}$ is the functor1

    \[ \style {display: inline-block; transform: rotate(180deg)}{よ}\mkern -2.5mu_{\mathcal{C}}\colon \mathcal{C}^{\mathsf{op}}\hookrightarrow \mathsf{CoPSh}(\mathcal{C}) \]

    where

    • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, we have

      \[ \style {display: inline-block; transform: rotate(180deg)}{よ}\mkern -2.5mu_{\mathcal{C}}(A) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h^{A}. \]
    • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the action on morphisms

      \[ \style {display: inline-block; transform: rotate(180deg)}{よ}\mkern -2.5mu_{\mathcal{C}|A,B}\colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)\to \operatorname {\mathrm{Nat}}(h^{B},h^{A}) \]

      of $\style {display: inline-block; transform: rotate(180deg)}{よ}\mkern -2.5mu_{\mathcal{C}}$ at $(A,B)$ is given by

      \[ \style {display: inline-block; transform: rotate(180deg)}{よ}\mkern -2.5mu_{\mathcal{C}|A,B}(f)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h^{f} \]

      for each $f\in \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)$, where $h^{f}$ is the corepresentable natural transformation associated to $f$ of Definition 12.2.3.1.1.


    1. 1Further Notation: Also written $h^{(-)}$, or simply $\style {display: inline-block; transform: rotate(180deg)}{よ}\mkern -2.5mu$.

    Let $\mathcal{C}$ be a category.

  • 1.

    Fully Faithfulness. The contravariant Yoneda embedding

    \[ \style {display: inline-block; transform: rotate(180deg)}{よ}\mkern -2.5mu_{\mathcal{C}}\colon \mathcal{C}^{\mathsf{op}}\hookrightarrow \mathsf{CoPSh}(\mathcal{C}) \]

    is fully faithful.

  • 2.

    Preservation and Reflection of Isomorphisms. The contravariant Yoneda embedding

    \[ \style {display: inline-block; transform: rotate(180deg)}{よ}\mkern -2.5mu_{\mathcal{C}}\colon \mathcal{C}^{\mathsf{op}}\hookrightarrow \mathsf{CoPSh}(\mathcal{C}) \]

    preserves and reflects isomorphisms, i.e. given $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the following conditions are equivalent:

    1. (a)

      We have $A\cong B$.

    2. (b)

      We have $h^{A}\cong h^{B}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: