8.7.1 Direct Images

    Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y$ be a relation.

    The direct image function associated to $R$ is the function1

    \[ R_{!}\colon \mathcal{P}(X)\to \mathcal{P}(Y) \]

    defined by2

    \begin{align*} R_{!}(U) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ b\in Y\ \middle |\ R^{-1}(b)\cap U\neq \text{Ø}\right\} \\ & = \left\{ b\in Y\ \middle |\ \begin{aligned} & \text{there exists some $a\in U$}\\ & \text{such that $b\in R(a)$} \end{aligned} \right\} \\ & = \bigcup _{a\in U}R(a) \end{align*}

    for each $U\in \mathcal{P}(X)$.


    1. 1Further Notation: Also written simply $R\colon \mathcal{P}(X)\to \mathcal{P}(Y)$.
    2. 2Further Terminology: The set $R(U)$ is called the direct image of $U$ by $R$.

    Identifying $\mathcal{P}(X)$ with $\mathrm{Rel}(\mathrm{pt},X)$ via Chapter 4: Constructions With Sets, Item 3 of Proposition 4.4.1.1.4, we see that the direct image function associated to $R$ is equivalently the function

    \[ R_{!}\colon \underbrace{\mathcal{P}(X)}_{\cong \mathrm{Rel}(\mathrm{pt},X)} \to \underbrace{\mathcal{P}(Y)}_{\cong \mathrm{Rel}(\mathrm{pt},Y)} \]

    defined by

    \[ R_{!}(U)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R\mathbin {\diamond }U \]

    for each $U\in \mathcal{P}(X)$, where $R\mathbin {\diamond }U$ is the composition

    \[ \mathrm{pt}\mathbin {\overset {U}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}X\mathbin {\overset {R}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}Y. \]

    Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y$ be a relation.

    1. 1.

      Functoriality. The assignment $U\mapsto R_{!}(U)$ defines a functor

      \[ R_{!}\colon (\mathcal{P}(X),\subset )\to (\mathcal{P}(Y),\subset ). \]

      In particular, for each $U,V\in \mathcal{P}(X)$, the following condition is satisfied:

      • (★)
      • If $U\subset V$, then $R_{!}(U)\subset R_{!}(V)$.
    2. 2.

      Adjointness. We have an adjunction

      witnessed by:

      1. (a)

        Units and counits of the form

        \begin{align*} \operatorname {\mathrm{id}}_{\mathcal{P}(X)} \hookrightarrow R_{-1}\circ R_{!},\\ R_{!}\circ R_{-1} \hookrightarrow \operatorname {\mathrm{id}}_{\mathcal{P}(Y)}. \end{align*}

        In particular:

        • For each $U\in \mathcal{P}(X)$, we have $U\subset R_{-1}(R_{!}(U))$.

        • For each $V\in \mathcal{P}(Y)$, we have $R_{!}(R_{-1}(V))\subset V$.

      2. (b)

        A bijections of sets

        \[ \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(R_{!}(U),V)\cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U,R_{-1}(V)), \]

        natural in $U\in \mathcal{P}(X)$ and $V\in \mathcal{P}(Y)$. In particular:

        1. (i)

          The following conditions are equivalent:

          1. (I)

            we have $R_{!}(U)\subset V$.

          2. (II)

            We have $U\subset R_{-1}(V)$.

    3. 3.

      Interaction With Unions of Families of Subsets. The diagram

      commutes, i.e. we have

      \[ \bigcup _{U\in \mathcal{U}}R_{!}(U)=\bigcup _{V\in R_{!}(\mathcal{U})}V \]

      for each $\mathcal{U}\in \mathcal{P}(X)$, where $R_{!}(\mathcal{U})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(R_{!})_{!}(\mathcal{U})$.

    4. 4.

      Interaction With Intersections of Families of Subsets. The diagram

      commutes, i.e. we have

      \[ \bigcap _{U\in \mathcal{U}}R_{!}(U)=\bigcap _{V\in R_{!}(\mathcal{U})}V \]

      for each $\mathcal{U}\in \mathcal{P}(X)$, where $R_{!}(\mathcal{U})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(R_{!})_{!}(\mathcal{U})$.

    5. 5.

      Interaction With Binary Unions. The diagram

      commutes, i.e. we have

      \[ R_{!}(U\cup V)=R_{!}(U)\cup R_{!}(V) \]

      for each $U,V\in \mathcal{P}(X)$.

    6. 6.

      Interaction With Binary Intersections. We have a natural transformation

      with components

      \[ R_{!}(U\cap V)\subset R_{!}(U)\cap R_{!}(V) \]

      indexed by $U,V\in \mathcal{P}(X)$.

    7. 7.

      Interaction With Differences. We have a natural transformation

      with components

      \[ R_{!}(U)\setminus R_{!}(V)\subset R_{!}(U\setminus V) \]

      indexed by $U,V\in \mathcal{P}(X)$.

    8. 8.

      Interaction With Complements. The diagram

      commutes, i.e. we have

      \[ R_{!}(U^{\textsf{c}})=R_{*}(U)^{\textsf{c}} \]

      for each $U\in \mathcal{P}(X)$.

    9. 9.

      Interaction With Binary Symmetric Differences. We have a natural transformation

      with components

      \[ R_{!}(U)\mathbin {\triangle }R_{!}(V)\subset R_{!}(U\mathbin {\triangle }V) \]

      indexed by $U,V\in \mathcal{P}(X)$.

    10. 10.

      Interaction With Internal Homs of Powersets. The diagram

      commutes, i.e. we have an equality of sets

      \[ R_{!}([U,V]_{X})=[R_{*}(U),R_{!}(V)]_{Y}, \]

      natural in $U,V\in \mathcal{P}(X)$.

    11. 11.

      Preservation of Colimits. We have an equality of sets

      \[ R_{!}\left(\bigcup _{i\in I}U_{i}\right)=\bigcup _{i\in I}R_{!}(U_{i}), \]

      natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}(X)^{\times I}$. In particular, we have equalities

      \[ \begin{gathered} R_{!}(U)\cup R_{!}(V) = R_{!}(U\cup V),\\ R_{!}(\text{Ø}) = \text{Ø}, \end{gathered} \]

      natural in $U,V\in \mathcal{P}(X)$.

    12. 12.

      Oplax Preservation of Limits. We have an inclusion of sets

      \[ R_{!}\left(\bigcap _{i\in I}U_{i}\right)\subset \bigcap _{i\in I}R_{!}(U_{i}), \]

      natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}(X)^{\times I}$. In particular, we have inclusions

      \[ \begin{gathered} R_{!}(U\cap V) \subset R_{!}(U)\cap R_{!}(V),\\ R_{!}(X) \subset Y, \end{gathered} \]

      natural in $U,V\in \mathcal{P}(X)$.

    13. 13.

      Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure

      \[ (R_{!},R^{\otimes }_{!},R^{\otimes }_{*|\mathbb {1}}) \colon (\mathcal{P}(X),\cup ,\text{Ø}) \to (\mathcal{P}(Y),\cup ,\text{Ø}), \]

      being equipped with equalities

      \[ \begin{gathered} R^{\otimes }_{*|U,V} \colon R_{!}(U)\cup R_{!}(V) \mathbin {\overset {=}{\rightarrow }}R_{!}(U\cup V),\\ R^{\otimes }_{*|\mathbb {1}} \colon \text{Ø}\mathbin {\overset {=}{\rightarrow }}\text{Ø}, \end{gathered} \]

      natural in $U,V\in \mathcal{P}(X)$.

    14. 14.

      Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure

      \[ (R_{!},R^{\otimes }_{!},R^{\otimes }_{*|\mathbb {1}}) \colon (\mathcal{P}(X),\cap ,X) \to (\mathcal{P}(Y),\cap ,Y), \]

      being equipped with inclusions

      \[ \begin{gathered} R^{\otimes }_{*|U,V} \colon R_{!}(U\cap V) \subset R_{!}(U)\cap R_{!}(V),\\ R^{\otimes }_{*|\mathbb {1}} \colon R_{!}(X) \subset Y, \end{gathered} \]

      natural in $U,V\in \mathcal{P}(X)$.

    15. 15.

      Interaction With Coproducts. Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X'$ and $S\colon Y\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y'$ be relations. The diagram

      commutes, i.e. we have

      \[ (R\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}S)_{!}(U\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V)=R_{!}(U)\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}S_{!}(V) \]

      for each $U\in \mathcal{P}(X)$ and each $V\in \mathcal{P}(Y)$.

    16. 16.

      Interaction With Products. Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X'$ and $S\colon Y\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y'$ be relations. The diagram

      commutes, i.e. we have

      \[ (R\boxtimes _{X\times Y}S)_{!}(U\boxtimes _{X\times Y}V)=R_{!}(U)\boxtimes _{X'\times Y'}S_{!}(V) \]

      for each $U\in \mathcal{P}(X)$ and each $V\in \mathcal{P}(Y)$.

    17. 17.

      Relation to Codirect Images. We have

      \[ R_{!}(U)=R_{*}(U^{\textsf{c}})^{\textsf{c}} \]

      for each $U\in \mathcal{P}(X)$.

    Item 1: Functoriality
    Omitted.

    Item 2: Adjointness
    This follows from Remark 8.7.1.1.3, Remark 8.7.2.1.2 and Unresolved reference, Unresolved reference of Unresolved reference.

    Item 3: Interaction With Unions of Families of Subsets
    We have

    \begin{align*} \bigcup _{V\in R_{!}(\mathcal{U})}V & = \bigcup _{V\in \left\{ R_{!}(U)\in \mathcal{P}(X)\ \middle |\ U\in \mathcal{U}\right\} }V\\ & = \bigcup _{U\in \mathcal{U}}R_{!}(U).\end{align*}

    This finishes the proof.

    Item 4: Interaction With Intersections of Families of Subsets
    We have

    \begin{align*} \bigcap _{V\in R_{!}(\mathcal{U})}V & = \bigcap _{V\in \left\{ R_{!}(U)\in \mathcal{P}(X)\ \middle |\ U\in \mathcal{U}\right\} }V\\ & = \bigcap _{U\in \mathcal{U}}R_{!}(U).\end{align*}

    This finishes the proof.

    Item 5: Interaction With Binary Unions
    We have

    \begin{align*} R_{!}(U\cup V) & = \bigcup _{a\in U\cup V}R(a)\\ & = \left(\bigcup _{a\in U}R(a)\right)\cup \left(\bigcup _{a\in V}R(a)\right)\\ & = R_{!}(U)\cup R_{!}(V). \end{align*}

    This finishes the proof.

    Item 6: Interaction With Binary Intersections
    We have

    \begin{align*} R_{!}(U\cap V) & = \bigcup _{a\in U\cap V}R(a)\\ & \subset \left(\bigcup _{a\in U}R(a)\right)\cap \left(\bigcup _{a\in V}R(a)\right)\\ & = R_{!}(U)\cap R_{!}(V), \end{align*}

    where we have used Chapter 4: Constructions With Sets, Item 7 of Proposition 4.3.6.1.2 by taking

    \begin{align*} \mathcal{U} & = \left\{ R(a)\in \mathcal{P}(Y)\ \middle |\ a\in U\right\} ,\\ \mathcal{V} & = \left\{ R(a)\in \mathcal{P}(Y)\ \middle |\ a\in V\right\} . \end{align*}

    Since $\mathcal{P}(Y)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2).

    Item 7: Interaction With Differences
    See [[Unknown Reference: proof-wiki:image-of-set-difference-under-relation]].

    Item 8: Interaction With Complements
    Applying Item 17 to $X\setminus U$, we have

    \begin{align*} R_{!}(U^{\textsf{c}}) & = R_{!}(X\setminus U)\\ & = Y\setminus R_{*}(X\setminus (X\setminus U))\\ & = Y\setminus R_{*}(U)\\ & = R_{*}(U)^{\textsf{c}}. \end{align*}

    This finishes the proof.

    Item 9: Interaction With Binary Symmetric Differences
    We have

    \begin{align*} R_{!}(U)\mathbin {\triangle }R_{!}(V) & = (R_{!}(U)\cup R_{!}(V))\setminus (R_{!}(U)\cap R_{!}(V))\\ & \subset (R_{!}(U)\cup R_{!}(V))\setminus (R_{!}(U\cap V))\\ & = (R_{!}(U\cup V))\setminus (R_{!}(U\cap V))\\ & \subset R_{!}((U\cup V)\setminus (U\cap V))\\ & = R_{!}(U\mathbin {\triangle }V), \end{align*}

    where we have used:

    Since $\mathcal{P}(Y)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

    Item 10: Interaction With Internal Homs of Powersets
    We have

    \begin{align*} R_{!}([U,V]_{X}) & = R_{!}(U^{\textsf{c}}\cup V)\\ & = R_{!}(U^{\textsf{c}})\cup R_{!}(V)\\ & = R_{*}(U)^{\textsf{c}}\cup R_{!}(V)\\ & = [R_{*}(U),R_{!}(V)]_{Y},\end{align*}

    where we have used:

    • Item 5 for the second equality.

    • Item 17 for the third equality.

    Since $\mathcal{P}(Y)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

    Item 11: Preservation of Colimits
    This follows from Item 2 and Unresolved reference, Unresolved reference of Unresolved reference.

    Item 12: Oplax Preservation of Limits
    Omitted.

    Item 13: Symmetric Strict Monoidality With Respect to Unions
    This follows from Item 11.

    Item 14: Symmetric Oplax Monoidality With Respect to Intersections
    This follows from Item 12.

    Item 15: Interaction With Coproducts
    Omitted.

    Item 16: Interaction With Products
    Omitted.

    Item 17: Relation to Codirect Images
    The proof proceeds in the same way as in the case of functions (Chapter 4: Constructions With Sets, Item 17 of Proposition 4.6.1.1.5): applying Item 17 of Proposition 8.7.4.1.4 to $A\setminus U$, we have

    \begin{align*} R_{*}(X\setminus U) & = Y\setminus R_{!}(X\setminus (X\setminus U))\\ & = Y\setminus R_{!}(U). \end{align*}

    Taking complements, we then obtain

    \begin{align*} R_{!}(U) & = Y\setminus (Y\setminus R_{!}(U)),\\ & = Y\setminus R_{*}(X\setminus U), \end{align*}

    which finishes the proof.

    Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y$ and $S\colon Y\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Z$ be relations.

    1. 1.

      Functionality I. The assignment $R\mapsto R_{!}$ defines a function

      \[ (-)_{!}\colon \mathrm{Rel}(X,Y) \to \mathsf{Sets}(\mathcal{P}(X),\mathcal{P}(Y)). \]
    2. 2.

      Functionality II. The assignment $R\mapsto R_{!}$ defines a function

      \[ (-)_{!}\colon \mathrm{Rel}(X,Y) \to \mathsf{Pos}((\mathcal{P}(X),\subset ),(\mathcal{P}(Y),\subset )). \]
    3. 3.

      Interaction With Identities. We have

      \[ (\Delta _{X})_{!}=\operatorname {\mathrm{id}}_{\mathcal{P}(X)}. \]
    4. 4.

      Interaction With Composition. We have

  • 5.

    Interaction With Converses. We have

    \[ R^{\dagger }_{!}=R^{-1}. \]
  • Item 1: Functionality I
    There is nothing to prove.

    Item 2: Functionality II
    This follows from Item 1 of Proposition 8.7.1.1.4.

    Item 3: Interaction With Identities
    Indeed, we have

    \begin{align*} (\chi _{X})_{!}(U) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}\chi _{X}(a)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}\left\{ a\right\} \\ & = U\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{\mathcal{P}(X)}(U) \end{align*}

    for each $U\in \mathcal{P}(X)$. Thus $(\chi _{X})_{!}=\operatorname {\mathrm{id}}_{\mathcal{P}(X)}$.

    Item 4: Interaction With Composition
    Indeed, we have

    \begin{align*} (S\mathbin {\diamond }R)_{!}(U) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}[S\mathbin {\diamond }R](a)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}S(R(a))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}S_{!}(R(a))\\ & = S_{!}\left(\bigcup _{a\in U}R(a)\right)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S_{!}(R_{!}(U))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[S_{!}\circ R_{!}](U) \end{align*}

    for each $U\in \mathcal{P}(X)$, where we used Item 11 of Proposition 8.7.1.1.4. Thus $(S\mathbin {\diamond }R)_{!}=S_{!}\circ R_{!}$.

    Item 5: Interaction With Converses
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: