13.2.9 Strict Epimorphisms

    Let $\mathcal{C}$ be a bicategory.

    A $1$-morphism $f\colon A\to B$ is a strict epimorphism in $\mathcal{C}$ if, for each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the functor

    \[ f^{*}\colon \mathsf{Hom}_{\mathcal{C}}\webleft (B,X\webright )\to \mathsf{Hom}_{\mathcal{C}}\webleft (A,X\webright ) \]

    given by precomposition by $f$ is injective on objects, i.e. its action on objects

    \[ f_{*}\colon \operatorname {\mathrm{Obj}}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (B,X\webright )\webright )\to \operatorname {\mathrm{Obj}}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (A,X\webright )\webright ) \]

    is injective.

    In detail, $f$ is a strict epimorphism if, for each diagram in $\mathcal{C}$ of the form

    if $\phi \circ f=\psi \circ f$, then $\phi =\psi $.

  • 2.

    Strict Epimorphisms in $\boldsymbol {\mathsf{Rel}}$. The strict epimorphisms in $\boldsymbol {\mathsf{Rel}}$ are characterised in Chapter 8: Relations, Proposition 8.4.9.1.1.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: