The Dualisation Functor. We have a functor
\[ D_{X}\colon \mathcal{P}(X)^{\mathsf{op}}\to \mathcal{P}(X) \]
given by
\begin{align*} D_{X}(U) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,\text{Ø}]_{X}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}} \end{align*}
for each $U\in \mathcal{P}(X)$, as in Chapter 4: Constructions With Sets, Item 5 of Proposition 4.4.7.1.3, satisfying the following conditions:
-
(a)
Duality. We have
-
(b)
Interaction With Internal Homs. The diagram
commutes, i.e. we have
\[ \underbrace{D_{X}(U\cap D_{X}(V))}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U\cap [V,\text{Ø}]_{X},\text{Ø}]_{X}}=[U,V]_{X} \]
for each $U,V\in \mathcal{P}(X)$.
-
(c)
Interaction With Direct Images. The diagram
commutes, i.e. we have
\[ R_{!}(D_{X}(U))=D_{Y}(R_{*}(U)) \]
for each $U\in \mathcal{P}(X)$.
-
(d)
Interaction With Coinverse Images. The diagram
commutes, i.e. we have
\[ R_{-1}(D_{Y}(U))=D_{X}(R^{-1}(U)) \]
for each $U\in \mathcal{P}(X)$.
-
(e)
Interaction With Inverse Images. The diagram
commutes, i.e. we have
\[ R^{-1}(D_{Y}(U))=D_{X}(R_{-1}(U)) \]
for each $U\in \mathcal{P}(X)$.
-
(f)
Interaction With Codirect Images. The diagram
commutes, i.e. we have
\[ R_{*}(D_{X}(U))=D_{Y}(R_{!}(U)) \]
for each $U\in \mathcal{P}(X)$.