The External Tensor Product. We have an external tensor product
\[ -_{1}\boxtimes _{X\times Y}-_{2}\colon \mathcal{P}(X)\times \mathcal{P}(Y)\to \mathcal{P}(X\times Y) \]
given by
\begin{align*} U\boxtimes _{X\times Y}V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{\mathrm{pr}}}^{-1}_{1}(U)\cap \operatorname {\mathrm{\mathrm{pr}}}^{-1}_{2}(V)\\ & = \left\{ (u,v)\in X\times Y\ \middle |\ \text{$u\in U$ and $v\in V$}\right\} . \end{align*}
This is the same map as the one in Chapter 4: Constructions With Sets, Item 5 of Proposition 4.4.1.1.4. Moreover, the following conditions are satisfied:
-
(a)
Interaction With Direct Images. Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X'$ and $S\colon Y\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y'$ be relations. The diagram
commutes, i.e. we have
\[ [R_{!}\times S_{!}](U\boxtimes _{X\times Y}V)=R_{!}(U)\boxtimes _{X'\times Y'}S_{!}(V) \]
for each $(U,V)\in \mathcal{P}(X)\times \mathcal{P}(Y)$.
-
(b)
Interaction With Coinverse Images. Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X'$ and $S\colon Y\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y'$ be relations. The diagram
commutes, i.e. we have
\[ [R_{-1}\times S_{-1}](U\boxtimes _{X'\times Y'}V)=R_{-1}(U)\boxtimes _{X\times Y}S_{-1}(V) \]
for each $(U,V)\in \mathcal{P}(X')\times \mathcal{P}(Y')$.