8.7.5 A Six-Functor Formalism for Sets, Part II

    The assignment $X\mapsto \mathcal{P}(X)$ together with the functors $R_{!}$, $R_{-1}$, $R^{-1}$, and $R_{*}$ of Section 8.7.1, Section 8.7.2, Section 8.7.3, and Section 8.7.4 and the functors

    \begin{align*} -_{1}\cap -_{2} & \colon \mathcal{P}(X)\times \mathcal{P}(X) \to \mathcal{P}(X),\\ [-_{1},-_{2}]_{X} & \colon \mathcal{P}(X)^{\mathsf{op}}\times \mathcal{P}(X) \to \mathcal{P}(X) \end{align*}

    of Chapter 4: Constructions With Sets, Item 1 of Proposition 4.3.9.1.2 and Chapter 4: Constructions With Sets, Item 1 of Proposition 4.4.7.1.3 satisfy several properties reminiscent of a six functor formalism in the sense of Unresolved reference.

    We collect these properties in Proposition 8.7.5.1.2 below.

    Let $X$ be a set.

    1. 1.

      The Projection Formula I. The diagram

      commutes, i.e. we have

      \[ R_{!}(U\cap R_{-1}(V))=R_{!}(U)\cap V \]

      for each $U\in \mathcal{P}(X)$ and each $V\in \mathcal{P}(Y)$.

    2. 2.

      The Projection Formula II. We have a natural transformation

      with components

      \[ R_{*}(U)\cap V\subset R_{*}(U\cap R^{-1}(V)) \]

      indexed by $U\in \mathcal{P}(X)$ and $V\in \mathcal{P}(Y)$.

    3. 3.

      Interaction Between Co/Direct Images and Internal Homs of Powersets. The diagram

      commutes, i.e. we have an equality of sets

      \[ R_{!}([U,V]_{X})=[R_{*}(U),R_{!}(V)]_{Y}, \]

      natural in $U,V\in \mathcal{P}(X)$.

    4. 4.

      Interaction Between Co/Inverse Images and Internal Homs of Powersets. The diagram

      commutes, i.e. we have an equality of sets

      \[ R^{-1}([U,V]_{X})=[R_{-1}(U),R^{-1}(V)]_{Y}, \]

      natural in $U,V\in \mathcal{P}(X)$.

    5. 5.

      The External Tensor Product. We have an external tensor product

      \[ -_{1}\boxtimes _{X\times Y}-_{2}\colon \mathcal{P}(X)\times \mathcal{P}(Y)\to \mathcal{P}(X\times Y) \]

      given by

      \begin{align*} U\boxtimes _{X\times Y}V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{\mathrm{pr}}}^{-1}_{1}(U)\cap \operatorname {\mathrm{\mathrm{pr}}}^{-1}_{2}(V)\\ & = \left\{ (u,v)\in X\times Y\ \middle |\ \text{$u\in U$ and $v\in V$}\right\} . \end{align*}

      This is the same map as the one in Chapter 4: Constructions With Sets, Item 5 of Proposition 4.4.1.1.4. Moreover, the following conditions are satisfied:

      1. (a)

        Interaction With Direct Images. Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X'$ and $S\colon Y\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y'$ be relations. The diagram

        commutes, i.e. we have

        \[ [R_{!}\times S_{!}](U\boxtimes _{X\times Y}V)=R_{!}(U)\boxtimes _{X'\times Y'}S_{!}(V) \]

        for each $(U,V)\in \mathcal{P}(X)\times \mathcal{P}(Y)$.

      2. (b)

        Interaction With Coinverse Images. Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X'$ and $S\colon Y\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y'$ be relations. The diagram

        commutes, i.e. we have

        \[ [R_{-1}\times S_{-1}](U\boxtimes _{X'\times Y'}V)=R_{-1}(U)\boxtimes _{X\times Y}S_{-1}(V) \]

        for each $(U,V)\in \mathcal{P}(X')\times \mathcal{P}(Y')$.

      3. (c)

        Interaction With Inverse Images. Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X'$ and $S\colon Y\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y'$ be relations. The diagram

        commutes, i.e. we have

        \[ [R^{-1}\times S^{-1}](U\boxtimes _{X'\times Y'}V)=R^{-1}(U)\boxtimes _{X\times Y}S^{-1}(V) \]

        for each $(U,V)\in \mathcal{P}(X')\times \mathcal{P}(Y')$.

      4. (d)

        Interaction With Codirect Images. Let $R\colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X'$ and $S\colon Y\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y'$ be relations. The diagram

        commutes, i.e. we have

        \[ [R_{*}\times S_{*}](U\boxtimes _{X\times Y}V)=R_{*}(U)\boxtimes _{X'\times Y'}S_{*}(V) \]

        for each $(U,V)\in \mathcal{P}(X)\times \mathcal{P}(Y)$.

      5. (e)

        Interaction With Diagonals. The diagram

        i.e. we have

        \[ U\cap V=\Delta ^{-1}_{X}(U\boxtimes _{X\times X}V) \]

        for each $U,V\in \mathcal{P}(X)$.

    6. 6.

      The Dualisation Functor. We have a functor

      \[ D_{X}\colon \mathcal{P}(X)^{\mathsf{op}}\to \mathcal{P}(X) \]

      given by

      \begin{align*} D_{X}(U) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,\text{Ø}]_{X}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}} \end{align*}

      for each $U\in \mathcal{P}(X)$, as in Chapter 4: Constructions With Sets, Item 5 of Proposition 4.4.7.1.3, satisfying the following conditions:

      1. (a)

        Duality. We have

      2. (b)

        Interaction With Internal Homs. The diagram

        commutes, i.e. we have

        \[ \underbrace{D_{X}(U\cap D_{X}(V))}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U\cap [V,\text{Ø}]_{X},\text{Ø}]_{X}}=[U,V]_{X} \]

        for each $U,V\in \mathcal{P}(X)$.

      3. (c)

        Interaction With Direct Images. The diagram

        commutes, i.e. we have

        \[ R_{!}(D_{X}(U))=D_{Y}(R_{*}(U)) \]

        for each $U\in \mathcal{P}(X)$.

      4. (d)

        Interaction With Coinverse Images. The diagram

        commutes, i.e. we have

        \[ R_{-1}(D_{Y}(U))=D_{X}(R^{-1}(U)) \]

        for each $U\in \mathcal{P}(X)$.

  • (e)

    Interaction With Inverse Images. The diagram

    commutes, i.e. we have

    \[ R^{-1}(D_{Y}(U))=D_{X}(R_{-1}(U)) \]

    for each $U\in \mathcal{P}(X)$.

  • (f)

    Interaction With Codirect Images. The diagram

    commutes, i.e. we have

    \[ R_{*}(D_{X}(U))=D_{Y}(R_{!}(U)) \]

    for each $U\in \mathcal{P}(X)$.

  • Item 1: The Projection Formula I
    We have

    \begin{align*} R_{!}(U\cap R_{-1}(V)) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ b\in Y\ \middle |\ R_{-1}(b)\cap (U\cap R_{-1}(V))\neq \text{Ø}\right\} \\ & = \left\{ b\in Y\ \middle |\ U\cap (R_{-1}(b)\cap R_{-1}(V))\neq \text{Ø}\right\} \\ & = \left\{ b\in Y\ \middle |\ U\cap R_{-1}(\left\{ b\right\} \cap V)\neq \text{Ø}\right\} \\ & = \left\{ b\in Y\ \middle |\ \text{$b\in V$ and $U\cap R_{-1}(b)\neq \text{Ø}$}\right\} \\ & = \left\{ b\in Y\ \middle |\ U\cap R_{-1}(b)\neq \text{Ø}\right\} \cap V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R_{!}(U)\cap V. \end{align*}

    where we have used Item 6 of Proposition 8.7.2.1.4 for the third equality.

    Item 2: The Projection Formula II
    We have

    \begin{align*} R_{*}(U)\cap V & \subset R_{*}(U)\cap R_{*}(R^{-1}(V))\\ & = R_{*}(U\cap R^{-1}(V)), \end{align*}

    where we have used:

    This finishes the proof.

    Item 3: Interaction Between Co/Direct Images and Internal Homs of Powersets
    This is a repetition of Item 10 of Proposition 8.7.1.1.4 and is proved there.

    Item 4: Interaction Between Co/Inverse Images and Internal Homs of Powersets
    This is a repetition of Item 10 of Proposition 8.7.3.1.3 and is proved there.

    Item 5: The External Tensor Product
    Indeed:

    This finishes the proof.

    Item 6: The Dualisation Functor
    Indeed:

    This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: