The intersection of $\mathcal{U}$ is the set $\bigcap _{U\in \mathcal{U}}U$ defined by
Let $X$ be a set and let $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
The intersection of $\mathcal{U}$ is the set $\bigcap _{U\in \mathcal{U}}U$ defined by
Let $X$ be a set.
Functoriality. The assignment $\mathcal{U}\mapsto \bigcap _{U\in \mathcal{U}}U$ defines a functor
In particular, for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$, the following condition is satisfied:
Oplax Associativity. We have a natural transformation
for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )\webright )$.
Left Unitality. The diagram
for each $U\in \mathcal{P}\webleft (X\webright )$.
Oplax Right Unitality. The diagram
in general, where $U\in \mathcal{P}\webleft (X\webright )$. However, when $U$ is nonempty, we have
Interaction With Unions I. The diagram
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Unions II. The diagram
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Intersections I. We have a natural transformation
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Intersections II. The diagrams
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Differences. The diagram
in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Complements I. The diagram
in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Complements II. The diagram
for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Complements III. The diagram
for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Symmetric Differences. The diagram
in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Internal Homs I. The diagram
in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Internal Homs II. The diagram
for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Internal Homs III. The diagram
for each $U\in \mathcal{P}\webleft (X\webright )$ and each $\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Direct Images. Let $f\colon X\to Y$ be a map of sets. The diagram
for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{!}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{!}\webright )_{!}\webleft (\mathcal{U}\webright )$.
Interaction With Inverse Images. Let $f\colon X\to Y$ be a map of sets. The diagram
for each $\mathcal{V}\in \mathcal{P}\webleft (Y\webright )$, where $f^{-1}\webleft (\mathcal{V}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f^{-1}\webright )^{-1}\webleft (\mathcal{V}\webright )$.
Interaction With Codirect Images. Let $f\colon X\to Y$ be a map of sets. The diagram
for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{*}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{*}\webright )_{*}\webleft (\mathcal{U}\webright )$.
Interaction With Unions of Families I. The diagram
for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Unions of Families II. Let $X$ be a set and consider the compositions
for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )\webright )$. We have the following inclusions:
Indeed, if $x\in \bigcap _{V\in \mathcal{V}}V$, then $x\in V$ for all $V\in \mathcal{V}$. But since $\mathcal{U}\subset \mathcal{V}$, it follows that $x\in U$ for all $U\in \mathcal{U}$ as well. Thus $x\in \bigcap _{U\in \mathcal{U}}U$, which gives our desired inclusion.
Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.
This finishes the proof.
so $\bigcap _{\left\{ u\right\} \in \chi _{X}\webleft (U\webright )}\left\{ u\right\} =X\neq \text{Ø}=U$. When $U$ is nonempty, we have two cases:
If $U$ is a singleton, say $U=\left\{ u\right\} $, we have
If $U$ contains at least two elements, we have
This finishes the proof.
This finishes the proof.
Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.
whereas
Thus we have
This finishes the proof.
whereas
Thus we have
This finishes the proof.
whereas
Thus we have
This finishes the proof.