4.3.7 Intersections of Families of Subsets

    Let $X$ be a set and let $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    The intersection of $\mathcal{U}$ is the set $\bigcap _{U\in \mathcal{U}}U$ defined by

    \[ \bigcap _{U\in \mathcal{U}}U\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $U\in \mathcal{U}$,}\\ & \text{we have $x\in U$}\end{aligned} \right\} . \]

    Let $X$ be a set.

    1. 1.

      Functoriality. The assignment $\mathcal{U}\mapsto \bigcap _{U\in \mathcal{U}}U$ defines a functor

      \[ \bigcap \colon \webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright ),\supset \webright )\to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ). \]

      In particular, for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$, the following condition is satisfied:

      • (★)
      • If $\mathcal{U}\subset \mathcal{V}$, then $\displaystyle \bigcap _{V\in \mathcal{V}}V\subset \bigcap _{U\in \mathcal{U}}U$.
    2. 2.

      Oplax Associativity. We have a natural transformation

      with components

      \[ \bigcap _{A\in \mathcal{A}}\left(\bigcap _{U\in A}U\right)\subset \bigcap _{U\in \bigcap _{A\in \mathcal{A}}A}U \]

      for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )\webright )$.

    3. 3.

      Left Unitality. The diagram

      commutes, i.e. we have

      \[ \bigcap _{V\in \left\{ U\right\} }V=U. \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    4. 4.

      Oplax Right Unitality. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcap _{\left\{ x\right\} \in \chi _{X}\webleft (U\webright )}\left\{ x\right\} \neq U \]

      in general, where $U\in \mathcal{P}\webleft (X\webright )$. However, when $U$ is nonempty, we have

      \[ \bigcap _{\left\{ x\right\} \in \chi _{X}\webleft (U\webright )}\left\{ x\right\} \subset U. \]
    5. 5.

      Interaction With Unions I. The diagram

      commutes, i.e. we have

      \[ \bigcap _{W\in \mathcal{U}\cup \mathcal{V}}W=\left(\bigcap _{U\in \mathcal{U}}U\right)\cap \left(\bigcap _{V\in \mathcal{V}}V\right) \]

      for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    6. 6.

      Interaction With Unions II. The diagram

      commute, i.e. we have

      \begin{align*} U\cup \left(\bigcap _{V\in \mathcal{V}}V\right) & = \bigcap _{V\in \mathcal{V}}\webleft (U\cup V\webright ),\\ \left(\bigcap _{U\in \mathcal{U}}U\right)\cup V & = \bigcap _{U\in \mathcal{U}}\webleft (U\cup V\webright )\end{align*}

      for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

    7. 7.

      Interaction With Intersections I. We have a natural transformation

      with components

      \[ \left(\bigcap _{U\in \mathcal{U}}U\right)\cap \left(\bigcap _{V\in \mathcal{V}}V\right)\subset \bigcap _{W\in \mathcal{U}\cap \mathcal{V}}W \]

      for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    8. 8.

      Interaction With Intersections II. The diagrams

      commute, i.e. we have

      \begin{align*} U\cup \left(\bigcap _{V\in \mathcal{V}}V\right) & = \bigcap _{V\in \mathcal{V}}\webleft (U\cup V\webright ),\\ \left(\bigcap _{U\in \mathcal{U}}U\right)\cup V & = \bigcap _{U\in \mathcal{U}}\webleft (U\cup V\webright )\end{align*}

      for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

    9. 9.

      Interaction With Differences. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcap _{W\in \mathcal{U}\setminus \mathcal{V}}W\neq \left(\bigcap _{U\in \mathcal{U}}U\right)\setminus \left(\bigcap _{V\in \mathcal{V}}V\right) \]

      in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    10. 10.

      Interaction With Complements I. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcap _{W\in \mathcal{U}^{\textsf{c}}}W\neq \bigcap _{U\in \mathcal{U}}U^{\textsf{c}} \]

      in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    11. 11.

      Interaction With Complements II. The diagram

      commutes, i.e. we have

      \[ \left(\bigcap _{U\in \mathcal{U}}U\right)^{\textsf{c}}=\bigcup _{U\in \mathcal{U}}U^{\textsf{c}} \]

      for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    12. 12.

      Interaction With Complements III. The diagram

      commutes, i.e. we have

      \[ \left(\bigcup _{U\in \mathcal{U}}U\right)^{\textsf{c}}=\bigcap _{U\in \mathcal{U}}U^{\textsf{c}} \]

      for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    13. 13.

      Interaction With Symmetric Differences. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcap _{W\in \mathcal{U}\mathbin {\triangle }\mathcal{V}}W\neq \left(\bigcap _{U\in \mathcal{U}}U\right)\mathbin {\triangle }\left(\bigcap _{V\in \mathcal{V}}V\right) \]

      in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    14. 14.

      Interaction With Internal Homs I. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W\neq \left[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\right]_{X} \]

      in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    15. 15.

      Interaction With Internal Homs II. The diagram

      commutes, i.e. we have

      \[ \left[\bigcap _{U\in \mathcal{U}}U,V\right]_{X}= \bigcup _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X} \]

      for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $V\in \mathcal{P}\webleft (X\webright )$.

    16. 16.

      Interaction With Internal Homs III. The diagram

      commutes, i.e. we have

      \[ \left[U,\bigcap _{V\in \mathcal{V}}V\right]_{X}= \bigcap _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} \]

      for each $U\in \mathcal{P}\webleft (X\webright )$ and each $\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    17. 17.

      Interaction With Direct Images. Let $f\colon X\to Y$ be a map of sets. The diagram

      commutes, i.e. we have

      \[ \bigcap _{U\in \mathcal{U}}f_{!}\webleft (U\webright )=\bigcap _{V\in f_{!}\webleft (\mathcal{U}\webright )}V \]

      for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{!}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{!}\webright )_{!}\webleft (\mathcal{U}\webright )$.

    18. 18.

      Interaction With Inverse Images. Let $f\colon X\to Y$ be a map of sets. The diagram

      commutes, i.e. we have

      \[ \bigcap _{V\in \mathcal{V}}f^{-1}\webleft (V\webright )=\bigcap _{U\in f^{-1}\webleft (\mathcal{U}\webright )}U \]

      for each $\mathcal{V}\in \mathcal{P}\webleft (Y\webright )$, where $f^{-1}\webleft (\mathcal{V}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f^{-1}\webright )^{-1}\webleft (\mathcal{V}\webright )$.

    19. 19.

      Interaction With Codirect Images. Let $f\colon X\to Y$ be a map of sets. The diagram

      commutes, i.e. we have

      \[ \bigcap _{U\in \mathcal{U}}f_{*}\webleft (U\webright )=\bigcap _{V\in f_{*}\webleft (\mathcal{U}\webright )}V \]

      for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{*}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{*}\webright )_{*}\webleft (\mathcal{U}\webright )$.

    20. 20.

      Interaction With Unions of Families I. The diagram

      commutes, i.e. we have

      \[ \bigcap _{U\in {\scriptsize \displaystyle \bigcup _{A\in \mathcal{A}}A}}U=\bigcap _{A\in \mathcal{A}}\left(\bigcap _{U\in A}U\right) \]

      for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

    21. 21.

      Interaction With Unions of Families II. Let $X$ be a set and consider the compositions

      given by

      \[ \begin{aligned} \mathcal{A} & \mapsto \bigcup _{U\in {\scriptsize \displaystyle \bigcap _{A\in \mathcal{A}}}A}U,\\ \mathcal{A} & \mapsto \bigcup _{A\in \mathcal{A}}\left(\bigcap _{U\in A}U\right), \end{aligned} \quad \begin{aligned} \mathcal{A} & \mapsto \bigcap _{U\in {\scriptsize \displaystyle \bigcup _{A\in \mathcal{A}}A}}U,\\ \mathcal{A} & \mapsto \bigcap _{A\in \mathcal{A}}\left(\bigcup _{U\in A}U\right) \end{aligned} \]

      for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )\webright )$. We have the following inclusions:

      All other possible inclusions fail to hold in general.

    Item 1: Functoriality
    Since $\mathcal{P}\webleft (X\webright )$ is posetal, it suffices to prove the condition $\webleft (\star \webright )$. So let $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ with $\mathcal{U}\subset \mathcal{V}$. We claim that

    \[ \bigcap _{V\in \mathcal{V}}V\subset \bigcap _{U\in \mathcal{U}}U. \]

    Indeed, if $x\in \bigcap _{V\in \mathcal{V}}V$, then $x\in V$ for all $V\in \mathcal{V}$. But since $\mathcal{U}\subset \mathcal{V}$, it follows that $x\in U$ for all $U\in \mathcal{U}$ as well. Thus $x\in \bigcap _{U\in \mathcal{U}}U$, which gives our desired inclusion.

    Item 2: Oplax Associativity
    We have

    \begin{align*} \bigcap _{A\in \mathcal{A}}\left(\bigcap _{U\in A}U\right) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $A\in \mathcal{A}$,}\\ & \text{we have $x\in \bigcap _{U\in A}U$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $A\in \mathcal{A}$ and each}\\ & \text{$U\in A$, we have $x\in U$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $U\in \displaystyle \bigcup _{A\in \mathcal{A}}A$,}\\ & \text{we have $x\in U$} \end{aligned} \right\} \\ & \subset \left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $U\in \displaystyle \bigcap _{A\in \mathcal{A}}A$,}\\ & \text{we have $x\in U$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{U\in {\scriptsize \displaystyle \bigcap _{A\in \mathcal{A}}A}}U. \end{align*}

    Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

    Item 3: Left Unitality
    We have

    \begin{align*} \bigcap _{V\in \left\{ U\right\} }V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $V\in \left\{ U\right\} $,}\\ & \text{we have $x\in U$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ x\in U \right\} \\ & = U.\end{align*}

    This finishes the proof.

    Item 4: Oplax Right Unitality
    If $U=\text{Ø}$, then we have

    \begin{align*} \bigcap _{\left\{ u\right\} \in \chi _{X}\webleft (U\webright )}\left\{ u\right\} & = \bigcap _{\left\{ u\right\} \in \text{Ø}}\left\{ u\right\} \\ & = X,\end{align*}

    so $\bigcap _{\left\{ u\right\} \in \chi _{X}\webleft (U\webright )}\left\{ u\right\} =X\neq \text{Ø}=U$. When $U$ is nonempty, we have two cases:

    1. 1.

      If $U$ is a singleton, say $U=\left\{ u\right\} $, we have

      \begin{align*} \bigcap _{\left\{ u\right\} \in \chi _{X}\webleft (U\webright )}\left\{ u\right\} & = \left\{ u\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U.\end{align*}
  • 2.

    If $U$ contains at least two elements, we have

    \begin{align*} \bigcap _{\left\{ u\right\} \in \chi _{X}\webleft (U\webright )}\left\{ u\right\} & = \text{Ø}\\ & \subset U.\end{align*}
  • This finishes the proof.

    Item 5: Interaction With Unions I
    We have

    \begin{align*} \bigcap _{W\in \mathcal{U}\cup \mathcal{V}}W & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{U}\cup \mathcal{V}$,}\\ & \text{we have $x\in W$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{U}$ and each}\\ & \text{$W\in \mathcal{V}$, we have $x\in W$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{U}$,}\\ & \text{we have $x\in W$} \end{aligned} \right\} \\ & \phantom{={}}\mkern 4mu\cap \left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{V}$,}\\ & \text{we have $x\in W$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left(\bigcap _{W\in \mathcal{U}}W\right)\cap \left(\bigcap _{W\in \mathcal{V}}W\right)\\ & = \left(\bigcap _{U\in \mathcal{U}}U\right)\cap \left(\bigcap _{V\in \mathcal{V}}V\right). \end{align*}

    This finishes the proof.

    Item 6: Interaction With Unions II
    Omitted.

    Item 7: Interaction With Intersections I
    We have

    \begin{align*} \left(\bigcap _{U\in \mathcal{U}}U\right)\cap \left(\bigcap _{V\in \mathcal{V}}V\right) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $U\in \mathcal{U}$,}\\ & \text{we have $x\in U$} \end{aligned} \right\} \\ & \phantom{={}}\mkern 4mu\cup \left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $V\in \mathcal{V}$,}\\ & \text{we have $x\in V$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{U}\cap \mathcal{V}$,}\\ & \text{we have $x\in W$} \end{aligned} \right\} \\ & \subset \left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{U}\cup \mathcal{V}$,}\\ & \text{we have $x\in W$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{W\in \mathcal{U}\cap \mathcal{V}}W.\end{align*}

    Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

    Item 8: Interaction With Intersections II
    Omitted.

    Item 9: Interaction With Differences
    Let $X=\left\{ 0,1\right\} $, let $\mathcal{U}=\left\{ \left\{ 0\right\} ,\left\{ 0,1\right\} \right\} $, and let $\mathcal{V}=\left\{ \left\{ 0\right\} \right\} $. We have

    \begin{align*} \bigcap _{W\in \mathcal{U}\setminus \mathcal{V}}U & = \bigcap _{W\in \left\{ \left\{ 0,1\right\} \right\} }W\\ & = \left\{ 0,1\right\} , \end{align*}

    whereas

    \begin{align*} \left(\bigcap _{U\in \mathcal{U}}U\right)\setminus \left(\bigcap _{V\in \mathcal{V}}V\right) & = \left\{ 0\right\} \setminus \left\{ 0\right\} \\ & = \text{Ø}. \end{align*}

    Thus we have

    \[ \bigcap _{W\in \mathcal{U}\setminus \mathcal{V}}W=\left\{ 0,1\right\} \neq \text{Ø}=\left(\bigcap _{U\in \mathcal{U}}U\right)\setminus \left(\bigcap _{V\in \mathcal{V}}V\right). \]

    This finishes the proof.

    Item 10: Interaction With Complements I
    Let $X=\left\{ 0,1\right\} $ and let $\mathcal{U}=\left\{ \left\{ 0\right\} \right\} $. We have

    \begin{align*} \bigcap _{W\in \mathcal{U}^{\textsf{c}}}U & = \bigcap _{W\in \left\{ \text{Ø},\left\{ 1\right\} ,\left\{ 0,1\right\} \right\} }W\\ & = \text{Ø}, \end{align*}

    whereas

    \begin{align*} \bigcap _{U\in \mathcal{U}}U^{\textsf{c}} & = \left\{ 0\right\} ^{\textsf{c}}\\ & = \left\{ 1\right\} . \end{align*}

    Thus we have

    \[ \bigcap _{W\in \mathcal{U}^{\textsf{c}}}U=\text{Ø}\neq \left\{ 1\right\} =\bigcap _{U\in \mathcal{U}}U^{\textsf{c}}. \]

    This finishes the proof.

    Item 11: Interaction With Complements II
    This is a repetition of Item 12 of Proposition 4.3.6.1.2 and is proved there.

    Item 12: Interaction With Complements III
    This is a repetition of Item 11 of Proposition 4.3.6.1.2 and is proved there.

    Item 13: Interaction With Symmetric Differences
    Let $X=\left\{ 0,1\right\} $, let $\mathcal{U}=\left\{ \left\{ 0,1\right\} \right\} $, and let $\mathcal{V}=\left\{ \left\{ 0\right\} ,\left\{ 0,1\right\} \right\} $. We have

    \begin{align*} \bigcap _{W\in \mathcal{U}\mathbin {\triangle }\mathcal{V}}W & = \bigcap _{W\in \left\{ \left\{ 0\right\} \right\} }W\\ & = \left\{ 0\right\} , \end{align*}

    whereas

    \begin{align*} \left(\bigcap _{U\in \mathcal{U}}U\right)\mathbin {\triangle }\left(\bigcap _{V\in \mathcal{V}}V\right) & = \left\{ 0,1\right\} \mathbin {\triangle }\left\{ 0\right\} \\ & = \text{Ø}, \end{align*}

    Thus we have

    \[ \bigcap _{W\in \mathcal{U}\mathbin {\triangle }\mathcal{V}}W=\left\{ 0\right\} \neq \text{Ø}=\left(\bigcap _{U\in \mathcal{U}}U\right)\mathbin {\triangle }\left(\bigcap _{V\in \mathcal{V}}V\right). \]

    This finishes the proof.

    Item 14: Interaction With Internal Homs I
    This is a repetition of Item 10 of Proposition 4.4.7.1.3 and is proved there.

    Item 15: Interaction With Internal Homs II
    This is a repetition of Item 11 of Proposition 4.4.7.1.3 and is proved there.

    Item 16: Interaction With Internal Homs III
    This is a repetition of Item 12 of Proposition 4.4.7.1.3 and is proved there.

    Item 17: Interaction With Direct Images
    This is a repetition of Item 4 of Proposition 4.6.1.1.5 and is proved there.

    Item 18: Interaction With Inverse Images
    This is a repetition of Item 4 of Proposition 4.6.2.1.3 and is proved there.

    Item 19: Interaction With Codirect Images
    This is a repetition of Item 4 of Proposition 4.6.3.1.7 and is proved there.

    Item 20: Interaction With Unions of Families I
    This is a repetition of Item 20 of Proposition 4.3.6.1.2 and is proved there.

    Item 21: Interaction With Unions of Families II
    This is a repetition of Item 21 of Proposition 4.3.6.1.2 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: