The intersection of $\mathcal{U}$ is the set $\bigcap _{U\in \mathcal{U}}U$ defined by
Let $X$ be a set and let $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.
The intersection of $\mathcal{U}$ is the set $\bigcap _{U\in \mathcal{U}}U$ defined by
Let $X$ be a set.
Functoriality. The assignment $\mathcal{U}\mapsto \bigcap _{U\in \mathcal{U}}U$ defines a functor
In particular, for each $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$, the following condition is satisfied:
Oplax Associativity. We have a natural transformation
for each $\mathcal{A}\in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$.
Left Unitality. The diagram
for each $U\in \mathcal{P}(X)$.
Oplax Right Unitality. The diagram
in general, where $U\in \mathcal{P}(X)$. However, when $U$ is nonempty, we have
Interaction With Unions I. The diagram
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.
Interaction With Unions II. The diagram
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$ and each $U,V\in \mathcal{P}(X)$.
Interaction With Intersections I. We have a natural transformation
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.
Interaction With Intersections II. The diagrams
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$ and each $U,V\in \mathcal{P}(X)$.
Interaction With Differences. The diagram
in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.
Interaction With Complements I. The diagram
in general, where $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.
Interaction With Complements II. The diagram
for each $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.
Interaction With Complements III. The diagram
for each $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.
Interaction With Symmetric Differences. The diagram
in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.
Interaction With Internal Homs I. The diagram
in general, where $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.
Interaction With Internal Homs II. The diagram
for each $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$ and each $V\in \mathcal{P}(X)$.
Interaction With Internal Homs III. The diagram
for each $U\in \mathcal{P}(X)$ and each $\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.
Interaction With Direct Images. Let $f\colon X\to Y$ be a map of sets. The diagram
for each $\mathcal{U}\in \mathcal{P}(X)$, where $f_{!}(\mathcal{U})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f_{!})_{!}(\mathcal{U})$.
Interaction With Inverse Images. Let $f\colon X\to Y$ be a map of sets. The diagram
for each $\mathcal{V}\in \mathcal{P}(Y)$, where $f^{-1}(\mathcal{V})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f^{-1})^{-1}(\mathcal{V})$.
Interaction With Codirect Images. Let $f\colon X\to Y$ be a map of sets. The diagram
for each $\mathcal{U}\in \mathcal{P}(X)$, where $f_{*}(\mathcal{U})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f_{*})_{*}(\mathcal{U})$.
Interaction With Unions of Families I. The diagram
for each $\mathcal{A}\in \mathcal{P}(\mathcal{P}(X))$.
Interaction With Unions of Families II. Let $X$ be a set and consider the compositions
for each $\mathcal{A}\in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$. We have the following inclusions:
Indeed, if $x\in \bigcap _{V\in \mathcal{V}}V$, then $x\in V$ for all $V\in \mathcal{V}$. But since $\mathcal{U}\subset \mathcal{V}$, it follows that $x\in U$ for all $U\in \mathcal{U}$ as well. Thus $x\in \bigcap _{U\in \mathcal{U}}U$, which gives our desired inclusion.
Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.
This finishes the proof.
so $\bigcap _{\left\{ u\right\} \in \chi _{X}(U)}\left\{ u\right\} =X\neq \text{Ø}=U$. When $U$ is nonempty, we have two cases:
If $U$ is a singleton, say $U=\left\{ u\right\} $, we have
If $U$ contains at least two elements, we have
This finishes the proof.
This finishes the proof.
Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.
whereas
Thus we have
This finishes the proof.
whereas
Thus we have
This finishes the proof.
whereas
Thus we have
This finishes the proof.